ZNOTES // IGCSE SERIES visit www.znotes.org

Updated to 2017-18 Syllabus

CIEIGCSE MATHS 0580

SUMMARIZED NOTES ON THE EXTENDED SYLLABUS

TABLE OF CONTENTS

2 CHAPTER 1 Number

3 CHAPTER 2 Algebra & Graphs

4 Geometry

6 CHAPTER 4 Mensuration

Coordinate Geometry

CHAPTER 6 Trigonometry

8 CHAPTER 7 Matrices & Transformations

9 CHAPTER 8 Probability

9 CHAPTER 9 Statistics

	Set representations:		
1. NUMBER	$A \longrightarrow B$	A B	В
Natural numbers:	(\land)	(χ)	$\left(\left(A \right) \right)$
\circ used for counting purposes			
\circ made up off all possible rational & irrational numbers	$A \cap B$ is shaded	$A \cup B$ is shaded	⊂ 'is a subset of'
• Integer: a whole number	X	8	8
Prime numbers:	(ab)	a e	
\circ divisible only by itself and one			
\circ 1 is not a prime number			A
 Rational numbers: can be written as a fraction 	$b \in X$	𝐔 = {a, b, c, d, e}	A' is shaded
• Irrational numbers: cannot be written as a fraction e.g. π	<u>1.3 Indices</u>		
<u>1.1 HCF and LCM</u>	• $n(A)$ = no. of elements in A • $A \subseteq B$ = A is a subset of B		
• Highest Common Factor and Lowest Common Multiple:	• \in = is an element of • $A \subset B$ = A is a proper		
	• ∉ =is not an element of subset of B		
	• $A' = $ compliment of set A • \emptyset or { } = empty set • $\&$ = Universal set • $A \cup B =$ union of A and B • $A \not \subseteq B =$ A is not a subset • $A \not \subseteq B =$ A is not a subset • $A \not \subseteq B =$ A is not a subset • $A \not \subseteq B =$ A is not a subset • $A \not \subseteq B =$ A is not a subset • $A \not \subseteq B =$ A is not a subset • $A \not \subseteq B =$ A is not a subset • $A \not \subseteq B =$ A is not a proper subset of B		
Factors of x Factors of y Factors of y			
	• $A \cap B$ = intersection of A		
	and B		
\sim HCE - product of common factors of x and y			
\circ LCM = product of common factors of x and y	Standard form:		
in Venn diagram	$0.10^4 = 10000$	$10^{-1} =$	= 0.1
A Drime Easterization finding	$0.10^3 = 1000$	$10^{-2} =$	= 0.01
• Prime Factorization: multip	$0.10^2 = 100^2$	$10^{-3} =$	= 0.001
a multiply together to make	$0.10^{1} = 10^{1}$	$10^{-4} =$	= 0.0001
the original number	$\circ 10^0 = 1$	10 ⁻⁵ =	= 0.00001
$48 = 2 \times 2 \times 2 \times 2 \times 3$			
1.2 Sets	Limits of accuracy:		
Definition of sets e.g.	• The degree of rounding of a number		
$A = \{x: x \text{ is a natural number}\}$	○ E.g. 2.1 to 1 d.p	. 2.05 ≤	≤ <i>x</i> < 2.15
$\circ B = \{(x, y): y = mx + c\}$			
$\circ C = \{x: a \le x \le b\}$	<u>1.4 Ratio & Proportion</u>		
$\circ D = \{a, b, c, \dots\}$	• Ratio: used to describe a fraction		
Notation:	○ e.g. 3 : 1		
• $n(A)$ = no. of elements in A • $A \subseteq B$ = A is a subset of B	• Foreign exchange: money changed from one currency to		
• \in = is an element of • $A \subset B$ = A is a proper	another using proportion		
 ∉ =is not an element of subset of B 	○ E.g. Convert \$22.50 to Dinars		
• A' = compliment of set A • $A \nsubseteq B$ = A is not a subset	\$1:0.30KD		
• Ø or { } = empty set of B	\$22.50 : 6.75KD		
• \mathcal{E} = Universal set • $A \not\subset B$ = A is not a proper	• Map scales: using proportion to work out map scales		
• $A \cup B$ = union of A and B subset of B	○ 1km = 1000m		
• $A \cap B$ = intersection of A	○ 1m = 100cm		
and B	○ 1cm = 10mm		
	1		

• **Direct variation:** *y* is proportional to *x*

$$y \propto x$$
 $y = kx$

• Inverse variation: *y* is inversely proportional to *x*

$$y \propto \frac{1}{x}$$
 $y = \frac{k}{x}$

<u>1.5 Percentages</u>

- Percentage:
- \circ Convenient way of expressing fractions
- o Percent means per 100
- Percentage increase or decrease:

 $Percentage \ increase = \frac{Actual \ Increase}{Original \ Amount}$

• Simple interest:

 $P = Principal \qquad R = Rate of Interest \qquad T = Period of Time$ • Compound interest:

$$A = P\left(1 + \frac{R}{100}\right)^n$$

P = Principal

$$R = Rate of Interest \qquad n = Period of Time$$

<u>1.6 Speed, Distance & Time</u>

$$Speed = \frac{Distance}{Time}$$

$$Average Speed = \frac{Total \, Distance}{Total \, Time}$$

km/hr m/s

hr

m

sec

- Units of speed:
- Units of distance: km
- Units of time:

$$km/hr \times \frac{5}{18} = m/sec$$
$$m/sec \times \frac{18}{5} = km/hr$$

2. Algebra & Graphs

2.1 Factorisation

• Common factors:

$$3x^2 + 6x$$
$$3x(x+2)$$

• Difference of two squares:

$$25 - x^2$$
$$(5 + x)(5 - x)$$

• Group factorization:

$$4d + ac + ad + 4c$$

$$4(d + c) + a(c + d)$$

$$(4 + a)(c + d)$$

 $x^{2} + 14x + 24$ $x^{2} + 12x + 2x + 24$ x(x + 12) + 2(x + 12) (x + 2)(x + 12)

2.2 Quadratic Factorization

General equation:

$$ax^2 + bx + c = 0$$

- Solve quadratics by:
 - Trinomial factorization
 - o Quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• When question says "give your answer to two decimal places", <u>use formula!</u>

2.3 Simultaneous Equations

- Simultaneous linear equations can be solved either by substitution or elimination
- Simultaneous linear and non-linear equations are generally solved by substitution as follows:
- Step 1: obtain an equation in one unknown and solve this equation
- Step 2: substitute the results from step 1 into the linear equation to find the other unknown
- The points of intersection of two graphs are given by the solution of their simultaneous equations

2.4 Inequalities

- Solve like equations
- Multiplying or dividing by negative \Rightarrow switch sign

$$\frac{y}{-3} \ge -7$$
$$y \le -7 \times -3$$
$$y < 21$$

• When two inequalities present, split into two

$$x < 3x - 1 < 2x + 7$$

$$x < 3x - 1 \qquad 3x - 1 < 2x + 7$$

$$x > -\frac{1}{2} \qquad x < 8$$

2.4 Linear Programming

For strict inequalities (<,>) use broken line
For non-strict inequalities (≤,≥) use solid line

y = 3

(2, 1)

(3

Stationa

x + 2y = 4

- Steps to solve:
 - \circ Interpret y = mx + c
 - Draw straight line graphs
 - \circ Shade
- o Solve

2.5 Sequences

• Linear sequences: Find common difference e.g. 3 then multiply by n and work out what needs to be added

ົບ 2້

0

Quadratic sequences:

- $\circ\,$ Work out the values and then place into formula to work out nth term formula
- Geometric progression: sequence where term has been multiplied by a constant to form next term

nth term of G.P. = $ar^{(n-1)}$

 \circ a = 1st term r = common difference

2.6 Distance-Time Graphs

- From O to A : Uniform speed
- From B to C : Uniform speed (return journey)
- From A to B : Stationery (speed = 0)

• Gradient = speed

2.7 Speed-Time Graphs

- From O to A : Uniform speed
- From A to B : Constant speed (acceleration = 0)
- From B to C : Uniform deceleration / retardation

- Area under a graph = distance travelled.
- Gradient = acceleration.
- If the acceleration is negative, it is called deceleration or retardation. (moving body is slowing down.)

2.8 Functions

• Function notation:

 $\circ f \colon x \to 2x - 1$

- \circ Function f such that x maps onto 2x 1
- Composite function: Given two functions f(x) and g(x), the composite function of f and g is the function which maps x onto f(g(x))

$\bullet f(2)$

• Substitute
$$x = 2$$
 and solve for $f(x)$

- fg(x)• Substitute x = g(x)
- $f^{-1}(x)$ • Let y = f(x) and make x the subject

3. GEOMETRY

<u>3.1 Triangles</u>

acute equilateral isosceles scalene triangle triangle triangle

obtuse scalene triangle

right triangle

isosceles right triangle

<u>3.2 Quadrilaterals</u>

- Rectangle: Opposite sides parallel and equal, all angles 90°, diagonals bisect each other.
- Parallelogram : Opposite sides parallel and equal, opposite angles equal, diagonals bisect each other

PAGE 4 OF 10

• Rhombus: A parallelogram with all sides equal, opposite angles equal, diagonals bisect each other

- Trapezium: One pair of sides parallel
- Kite: Two pairs of adjacent sides equal, diagonals meet at right angles bisecting one of them

3.3 Construction

• Constructing triangles:

Step 2

Step 2

Step 4

Step 2

• Perpendicular bisector:

• Angle bisector:

<u>3.4 Symmetry</u>

- A **line of symmetry** divides a two-dimensional shape into two congruent (identical) shapes.
- A **plane of symmetry** divides a three-dimensional shape into two congruent solid shapes.

• The number of times shape fits its outline during a complete revolution is called the order of **rotational symmetry**.

Shape	Number of Lines of Symmetry	Rotational Symmetry Order
Square	4	4
Rectangle	2	2
Parallelogram	0	2
Rhombus	2	2
Trapezium	0	1
Kite	1	1
Equilateral triangle	3	3
Regular hexagon	6	6

• Properties of circles:

- Equal chords are equidistant from the centre
- The perpendicular bisector of a chord passes through the centre
- o Tangents from an external point are equal in length

<u>3.5 Polygons</u>

- Sum of angles at a point = 360
- Angles on a straight line = 180
- Sum of angles in a triangle =180
- For regular polygon

External angles =
$$\frac{360}{n}$$

• Internal angles = $180 - \frac{360}{3}$

- For irregular polygon:
 - \circ Sum of exterior angles =360
 - Sum of interior angles =180(n-2)
- Vertically opposite angles

Corresponding angles

• Enlargement (E):

 $\circ\,$ To describe an enlargement, state the scale factor, K and the centre of enlargement

$$Scale \ factor = \frac{length \ of \ image}{length \ of \ object}$$

Area of image = K^2 area of object

- If K > 0, both object and image lie on same side of the centre of enlargement.
- If K < 0, object and image lie on opposite side of the centre of enlargement.

7.4 Transformation by Matrices

• Reflection:

• Enlargement: $(k \quad 0)$

```
    Rotation:
```


Reflection in the x - axis

Reflection in the y - axis

Reflection in the line y = x

Reflection in the line y = -x

where k=scale factor and centre of enlargement = (0,0)

Rotation 90° anticlockwise, centre (0,0)

Rotation 90° clockwise, centre (0,0)

Rotation 180° clockwise/

anticlockwise, centre (0,0)

8. PROBABILITY

• Probability is the study of chance, or the likelihood of an event happening.

Probability of an event = $\frac{number of favourable outcomes}{total number of outcomes}$

- If probability = 0, the event is impossible and if probability =1, the event is certain to happen
- All probabilities lie between 0 and 1.

<u>8.1 Events</u>

Exclusive events:

- Two events are exclusive if they cannot occur at the same time.
- The OR Rule:
 - $\circ\,$ For exclusive events A and B
- \circ p(A or B) = p(A) + p(B)

Independent events:

- Two events are independent if occurrence of one is unaffected by occurrence of other.
- The AND Rule:

 \circ p(A and B) = p(A) × p(B)

9. STATISTICS

- A histogram displays the frequency of either continuous or grouped discrete data in the form of bars.
- The bars are joined together.
- The bars can be of varying width.
- The frequency of the data is represented by the area of the bar and not the height.
- When class intervals are different it is the area of the bar which represents the frequency not the
- height
- Instead of frequency being plotted on the vertical axis, frequency density is plotted.
- Class width = Interval
- Frequency density = Height Frequency = Class width × Frequency density

9.2 Averages

• Mean:

Sum of values

number of values

- Median:
 - The middle value when the data has been written in ascending or descending order

- \circ Odd no. of values $\frac{5+1}{2} = 3rd \ value$
- Even no. of values $\frac{6+1}{2} = 3.5th \ value$ (add two values divide by 2)
- Mode:
 - $\circ\,$ Most frequently occurring value
- Range:
 - \circ Difference between highest and lowest values
- Estimated mean of grouped data:
 - $\circ\,$ Work out midpoints of each group and multiply by frequency
 - $\circ\,$ Divide by number of values

9.3 Cumulative Frequency

- Cumulative frequency is the total frequency up to a given point.
- Inter-quartile range = upper quartile lower quartile

