

NEET SAMPLE PAPER - 1

Maximum Marks: 720

Topics Covered:

Physics :Full Syllabus

Chemistry :Full Syllabus

Biology : Full Syllabus

Important Instruction:

1. Use Blue / Black Ball point pen only.

2. There are three sections of equal weightage in the question paper A, B, C (**Physics, Chemistry having 45 questionsand Biology having 90 questions.**

3. You are awarded +4 marks for each correct answer and -1 marks for each incorrect answer.

4. Use of calculator and other electronic devices is not allowed during the exam.

5. No extra sheets will be provided for any kind of work.

Name of the Student :	Class:
Father's Name:	Signature :
Student's Name :	Roll NoContact No :

PART – A (PHYSICS)

1. As shown in figure the tension in the horizontal cord is 20 *N*. The weight *W* and tension in the string *OA* in Newton are

	(a) $30\sqrt{3}, 30$	A 30°		
	(b) $20\sqrt{3}, 40$	20 N		
	(c) $60\sqrt{3}, 30$	0		
	(d) 40√3, 30	W		
	2. From the dimensional con	sideration, which of the f	ollowing equation is cor	rrect
	(a) T = $2\pi \sqrt{\frac{R^3}{GM}}$ (b) T	$T = 2\pi \sqrt{\frac{2GM}{R^3}}$ (c) T	$=2\pi\sqrt{\frac{GM}{R^2}}$ (d) T	$T = 2\pi \sqrt{\frac{R^2}{GM}}$
	 The velocity of a body dep (a) Uniform acceleration (c) Non-uniform acceleration 	ends on time according to	the equation $v = 40 + (b)$ Uniform retardati (d) Zero acceleration	$-0.2t^3$. The body is undergoing on
	4. A particle undergoes unifo centripetal force acting on th	orm circular motion in a ho ne particle is 20 N. Its kine	orizontal plane. The rac tic energy is	lius of the circle is 10 cm. The
	(a) 0.1 <i>J</i>	(b) 0.2	(c) 2.0 J	(d) 1.0 <i>J</i>
:	5. As shown in the figure, tw spring balance will be	o equal masses each of 4	kg are suspended from	a spring balance. The reading of the
	(a) Zero	(b) 2 <i>kg</i>		
	(c) 4 <i>kg</i>	(d) Between zero and	2 kg	4kg
	6. A child weighing 30 kg slid	es down a rope hanging f	from the branch of a tall $10 (2)$	tree. If the force of friction acting
i	against him is 2 N, what is th	e acceleration of the child	$a (1ake g = 10m/s^{-})$	$(1)002 = (2^{2})$
	(a) $22.5 m / s^2$	(U) 8 <i>m / s²</i>	(C) $5 m / s^2$	(a)9.93 m/S ⁻

7. A body of mass 3 kg is under a force, which causes a displacement in it given by $S = \frac{2t^3}{3}$ (in m). Find the work done by the force in first 2 seconds				
(a) 2 J	/ (b)	3.8 J	(c) 24 J	(d) 96 J
8. If the in falling	speed of revolution of g through a distance eq	a particle on the circumfo qual to the radius are equa	erence of a circle and in al, then the centripetal a	a separate case, the speed gained acceleration will be
(a) $\frac{g}{2}$		(b) $\frac{g}{4}$	(c) $\frac{g}{3}$	(d) 2 <i>g</i>
9. A unif of 20 rad (a) 16.0	form circular disc of ma d/s. Find its angular ma × 10 ⁻⁵ (b) 8.0	ass 200 g and radius 4.0 cr omentum (in kg-m/s) abc) × 10 ⁻⁵ (c) 4.0 >	m is rotated about one c out the axis of rotation. < 10 ⁻⁵ (d) 10 >	of its diameter at an angular speed < 10 ⁻⁵
10. Time another	e period of revolution of planet, whose radius i	of a nearest satellite around s 4R but having same den	nd a planet of radius <i>R</i> is sity is	T. Period of revolution around
(a) 7	Г	(b)4 <i>T</i>	(c) 16 <i>T</i>	(d) $3\sqrt{3}T$
11. The (a) F (c) li	increase in length on s Reduce by 0.02% ncrease by 0.02%	tretching a wire is 0.05%.	If its Poisson's ratio is 0. (b) Reduce by 0.01% (d) Decrease by 0.4%	2, then its diameter
12. If the 2 <i>V</i> from	e work done in blowing the same soap solution	g a bubble of volume V is n will be	W, then the work done i	in blowing the bubble of volume
(a) V	N/4	(b) √3 W	(c) ∛2 W	(d) ∛4 <i>W</i>
13. A wooden block of volume 1000 cm ³ is suspended from a spring balance. It weighs 10 N in air. It is suspended in water such that half of the block is below the surface of water. The reading of the spring balance is				
(a) 1	0 N	(b) 9 N	(c) 8 <i>N</i>	(d) 5 <i>N</i>
14. 1 <i>gm</i>	of ice at 0°C is mixed	with 2 <i>gm</i> of water at 100°	°C the resulting tempera	ture will be
(a) 5	°C	(b) 0℃	(c) 40° <i>C</i>	(d) ∞

15. A jar has a mixture of hydrogen and oxygen gas in the ratio of 1:4. The ratio of mean kinetic energies of hydrogen and oxygen molecules is (a) 1 : 16 (c) 1:5 (d) 1:1 (b) 1 : 4 16. Initially the volume of an ideal gas ($\gamma = 1.5$) is V at which root mean square velocity of the molecules is V_{rms} . If root mean square velocity is reduced so that ratio of two root mean square velocities (initial to final) is r and corresponding ratio of volumes (final to initial volume) is V_r , then (a) $V_r = (r)^4$ (b) $V_r = (r)^3$ (c) $V_r = (r)^3$ (d) $V_r = r$ 17. In a steady state of thermal conduction, temperature of the ends A and B of a 20 cm long rod are $200^{\circ}C$ and 0° C respectively. What will be the temperature of the rod at a point at a distance of 6 cm from the end Aof the rod (d) 15° C (b)140°*C* (c) $5^{\circ} C$ $(a) - 30^{\circ} C$ 18. The period of oscillation of a simple pendulum of length L suspended from the roof of a vehicle which moves without friction down an inclined plane of inclination α , is given by (d) $2\pi \sqrt{\frac{L}{g \tan \alpha}}$ (a) $2\pi \sqrt{\frac{L}{g \cos \alpha}}$ (b) $2\pi \sqrt{\frac{L}{g \sin \alpha}}$ (c) $2\pi \sqrt{\frac{L}{a}}$ 19. The equation of stationary wave along a stretched string is given by $y = 5 \sin \frac{\pi x}{2} \cos 40 \pi t$ where x and y are in centimetre and t in second. The separation between two adjacent anti nodes is : (a) 1 cm (b) 2 cm (c) 3 cm (d)1.5 cm 20. A cube of side b has a charge 2q at each of its vertices. The electric field due to this charge distribution at the centre of this cube will be (a) $q/4b^2$ (b) $q/8b^2$ (c)32q/ b^2 (d) Zero

NEET

21. Four condensers are joined as shown in the adjoining figure. The capacity of each is $6\mu F$. The equivalent capacity between the points *A* and *B* will be

Rough	Space
-------	-------

22. A parallel plate condenser is immersed in an oil of dielectric constant 3. The field between the plates is

- (a) Increased by 3 (b) Decreased by $\frac{1}{3}$
- (c) Increased by $\sqrt{2}$ (d) Decreased by $\frac{1}{\sqrt{2}}$

23. The internal resistance of a cell of e.m.f 2V is 0.2 Ω . It's connected to a resistance of 4 Ω . The voltage across the cell will be

(a) 0.5 volt (b) 1.9 volt (c) 1.45 volt (d) 2 volt

24. As the switch S is closed in the circuit shown in figure, current passed through the switch is approximately

(a) 4.5 A (b)6.0A (c)3.0 A (d)Zero

25.Two identical particles of charge q each are connected by a mass less spring of force constant K. They are placed over a smooth horizontal surface. They are released when the separation between them is r and spring is in its natural length. If maximum extension of the spring is r, the value of \sqrt{K} is (Neglect gravitational effect)

26. A wire of fixed length is turned to form a coil of one turn. It is again turned to form a coil of four turns. If in both cases same amount of current is passed, then the ratio of the intensities of magnetic field produced at thecentre of a coil will be

(a) 16 times of first case	(b) $\frac{1}{9}$ times of first case
(c) 4 times of first case	(d) $\frac{1}{3}$ times of first case

27. A proton and an α – particle enter a uniform magnetic field perpendicularly with the same speed. If proton					
takes $25 \mu \text{sec}$ to make 5 revol	utions, then the periodic	time for the α – particle	would be		
(a) 25 <i>µ sec</i>	(b) 50 <i>μ sec</i>	(c) 10 <i>μ sec</i>	(d) 5 <i>µ sec</i>		
28. A coil having an area A_0 is	s placed in a magnetic fiel	d which changes from <i>B</i>	, to $3B_0$ in a time interval <i>t</i> . The		
e.m.f. induced in the coil will l	be a second seco				
(a) $\frac{2A_0B_0}{t}$	(b) $\frac{4A_0B_0}{t}$	$(c)\frac{3B_0}{A_0t}$	(d) $\frac{4B_0}{A_0 t}$		
29. A coil of <i>Cu</i> wire (radius- <i>r</i> ,	self inductance-L) is bent	in two concentric turns	each having radius $\frac{r}{2}$. The self		
inductance now	(b) <i>41</i>	$(c) \in I$	(d) / 2		
(<i>a)2L</i>			(0) 2 / 2		
30. What is the <i>r.m.s.</i> value of twice of that produced by a d	an alternating current wirect current of 2 ampered	hich when passed throug s in the same resistor	h a resistor produces heat which is		
(a) 6 <i>amp</i>	(b) 4 <i>amp</i>	(c) 2.82 <i>amp</i>	(d) 0.66 <i>amp</i>		
31. The resonant frequency or resonant frequency will become	f a circuit is <i>f</i> . If the capac ne	itance is made 16 times t	he initial values, then the		
(a) <i>f</i> / 2	(b) 2 <i>f</i>	(c) <i>f</i>	(d) <i>f</i> / 4		
32. In the circuit given below, what will be the reading of the voltmeter (a) $300 V$ (b) $900 V$ (c) $200 V$					
(d) 400 V 200V, 50 Hz					
33. If power factor is 1/2 in a	series <i>RL</i> circuit $R = 2000$	2, 50 Hz. ac mains is use	d then <i>L</i> is		
(a) $\frac{2\sqrt{3}}{\pi}$ Henry	(b) π Henry	(c) $\frac{\pi}{\sqrt{3}}$ Henry	(d) None of these		

Rough	Space
-------	-------

2R

2R ww

> ş R

~^^^

 D_1

 D_2 $\overline{D_3}$

Ε

34. A photon and an electron have equal energy E, then λ_{photon} / $\lambda_{electron}$ is proportional to

(a)
$$\sqrt{E^3}$$
 (b) $1/\sqrt{E}$ (c) $1/E^2$ (d)Does not depend upon E

35. The maximum velocity of an electron emitted by light of wavelength λ incident on the surface of a metal of work function ϕ , is

(a)	$\left[\frac{2(hc+\lambda\phi)}{m\lambda}\right]$	(b) $\frac{2(hc - \lambda\phi)}{m}$	(c) $\left[\frac{2(hc-\lambda\phi)}{m\lambda}\right]^{1/2}$	(d) $\left[\frac{2(h\lambda-\phi)}{m}\right]^{1/2}$
-----	---	-------------------------------------	---	---

Where h = Planck's constant, m = mass of electron and c = speed of light. When a point source of monochromatic

36. The ratio of areas within the electron orbits for the first excited state to the ground state for hydrogen atom is (d) 8 : 1

(b) 20 : 1 (a) 16 : 1 (c) 4 : 1

37. In the following circuit of PN junction diodes D_1 , D_2 and D_3 are ideal then i is

- (b) E/2R (a) *E/R*
- (b) 2E/3R (d) Zero

38. In the following circuit the equivalent resistance between A and B is

6Ω 4Ω ~~~ $\frac{20}{3}\Omega$ **** \ \ \ \ \ \ (b) 10 Ω (a) В Α 6Ω ≶ 0 - 10V - 2V (d) 5Ω (c) 20Ω 8Ω 12Ω ~^^^

39. In the given detector circuit, the suitable value of carrier frequency is

— 4cm —

40. A compound microscop final image to be at the lea (a) +5	e has a magnifying st distance of distin (b) – 5	power 30. The focal length c act vision. The magnification ((c) +4	of its eye-piece is 5 <i>cm</i> . Assuming the produced by the objective will be (d) – 4	9
41. In YDSE, a thin mica sh wave in front of the slit abo central bright maximum wi	eet of thickness 2× ove the central line Il shift	10 ⁻⁶ <i>m</i> and refractive index (of the screen. The waveleng	μ = 1.5) is introduced in the path of th of the wave used is 5000Å. The	the
(a) 2 fringes upward		(b) 2 fringes downward		
(c) 4 fringes upward		(d) 4 fringes downward		
42. If two waves represent	ed by $y_1 = 4 \sin \omega t$ a	and $y_2 = 3\sin\left(\omega t + \frac{\pi}{3}\right)$ interfe	ere at a point, the amplitude of the	
resulting wave will be abou	ıt			
(a) 4	(b) 6	(c) 8	(d) 3	
43. The path difference bet	ween two interferi	ng waves of equal intensities	at a point on the screen is $\frac{\lambda}{4}$. The	
ratio of intensity at this poi	nt and that at the c	central fringe will be		
(a) 1 : 1	(b) 1:2	(c) 4 : 1	(d) 1 : 8	
44. When the rectangular r the top of the tank can just liquid is shown. The refract(a) 1.25(c) 1.85	netal tank is filled t see the corner <i>E</i> ; a ive index of the liqu (b) 1.60 (d) 2.12	o the top with an unknown li a ray that refracts towards th uid is	quid, as observer with eyes level with eyes l	th

45. The half-life period of a radio-active element X is same as the mean life time of another radioactive element Y. Initially they have the same number of atoms. Then

(a) X and Y decay at same rate always

(b) X will decay faster than Y (d) X and Y have same decay rate initially

(c) Y will decay faster than X

<u> PART – B (CHEMISTRY</u>

46. By what factors doe doubled?	es the average velocity of the average velocity of the average velocity of the second s	of a gaseous molecule in	ncrease when the temperature (in Kelvin)	is
(a) 1.4	(b) 2.0	(c) 2.8	(d) 4.0	
47. Which of the follow (a) q=o, $\Delta T < 0$, w = (c) q \neq 0, ΔT =0, w=	ring is correct option for ≠ 0 €0	r free expansion of an id (b) q=0, ΔT ≠ (d) q=0, ΔT=0,	leal gas under adiabatic condition? 0 , w=0 , w=0	
48. The energies E_1 and wavelengths i.e. Λ_1 and (a) $\lambda_1 = 1/2 \lambda 2$	d E ₂ of two radiations ar λ_2 will be: (b) $\lambda_1 = \lambda_2$	te 25 eV and 50 eV respective (c) $\lambda_1 = 2\lambda_2$	ectively. The relation between their (d) $\lambda_1 = 4\lambda_2$	
49. If n = 6, the correct (a) ns → np→(n -1)d → (c) ns → (n -1)d → (n - 2	sequence of filling of el → (n - 2)f 2)f → np	ectrons will be (b) ns → (d) ns →	P (n - 2)f → (n -1)d → np P (n - 2)f → np → (n -1)d	
50. Oxidation states of (a) +3, +5, +4	P in H ₄ P ₂ O ₅ , H ₄ P ₂ O ₆ , H ₄ (b)+5, +3, + 4	P ₂ O ₇ are respectively: (c)+5, +4, +3	(d) +3, +4, +5	
51. Total number of ele (a) 10	ements out of first 100 e (b)20	elements possessing 3 d (c) 40	electrons are: (d) 80	
52. Which bond angle 6	would result in the ma	aximum dipole moment	for the triatomic molecule XY ₂ ?	
(a) 90 ⁰ (c)150 ⁰	(b) 120 ⁰ (d) 180 ⁰	У	θ X	
53.With which of the following solutions lead cannot be precipitated as $PbCl_2$, Ksp=2.4 x 10 ⁻⁴ , when equal concentration of $Pb(NO_3)_2$ is mixed with equal volume of:				
(a)0.5 N HCl	(b) 0.05 N HCl	(c)1.0 N HCl	(d) 2.0 N HCl	

 54. Perhydrol is (a) The addition compound of H₂O (b) The compound formed when acidifi (c) 100 Volumes of H₂O₂ solution (d) Mixture of H₂O₂ and carbon dioxide 	₂ and urea ed TiO₂ reacts w	ith H ₂ O ₂	
55. Which of the following gas is liberat	ed when NaNO ₃	salt is heated	
(a) NO_2 (b) NO (c) N_2		(d) O ₂	
56. 'Anodisedaluminiumis aluminium:(a) obtained on anode(c) alloy of Al containing 95%		(b) electrolytically coa (d) none	ated with Aluminium oxide
57. Carbogen is:			
(a) apure form of C (b) CO	:l ₂	(c) mixture of CO and	$CO_2(d)$ mixture of O_2 and CO_2
58. Flagpole-flogpole interaction is pres(a) chair form of cyclohexane(c) twist boat form of cyclohexane	ent in: O	(b) boat form of cyclc (d) half chair form of	ohexane cyclohexane
59.The IUPAC name of the given compo	und is:	CH ₂ CH ₂ CI	
(a) 2-chloroehtyl benzoyl ether (c) 1-chloro-2-benzoylethane	(b) 2-b (d) 2-cl	enzoyloxy-1-chloroeth nloroethyl benzoate	ane
60. Consider the following carbocations I. Cl_3C^+ II. Cl_2CH^+ III. CIC The stability sequence follows the order	: H ₂ ⁺ IV. CH	+ 3•	
(a) IV <i<ii (b)="" <="" <iii="" i="" i<="" td=""><td>< < V</td><td>(c) IV < I < III < II</td><td>(d) IV< II < I < III</td></i<ii>	< < V	(c) IV < I < III < II	(d) IV< II < I < III

61. The Lassaigne's extract is boiled with conc. HNO ₃ while testing (a) increases the concentration of ions (b) deco			nile testing for halogens. (b) decomposes Na ₂ S and	By doing so it: nd NaCN, if formed	
(c) helps in the precipitation of AgCl		(d) increases the solubi	lity product of AgCl		
62. kJ/r	For an endothermic reactio nol). Minimum value of 'Ea'	n, energy of activation is will be:	'Ea' and enthalpy of rea	ction is ΔH (both of these in	
	(a) less than ∆H	(b) equal to ΔH	(c) more than ∆H	(d) equal to zero	
63.	Mole fraction of the solute	in a 1.00 molal aqueous	solution is:		
	(a) 1.7700	(b) 0.1770	(c) 0.0177	(d) 0.0344	
64. cou	Standard electrode potentian ples in their standard state	al for Sn ⁴⁺ /Sn couple is +(are connected to make a	0.15 V and that for theCr cell. The cell potential v	^{.3+} /Cr couple is –0.74 V. These two vill be:	
	(a) +1.83 V	(b) +1.19 V	(c) +0.89 V	(d) +0.18 V	
66.	 66. Presence of nitro group in a benzene ring: (a) renders the ring basic (b) deactivates the ring towards nucleophilic substitution (c) deactivates the ring towards electrophilic substitution (d) activates the ring towards electrophilic substitution 				
67.	Which one of the following	is employed as a Tranqu	ilizer drug?		
	(a) Promethazine	(a) vallum	(c) Naproxen	(a) Mitepristone.	
68.	Which of the following pair	s of metals is purified by	van Arkel method?		
	(a) Ni and Fe (b) Ga and In (c) Zr and Ti (d) Ag and Au				
69.	69. The alkyl halide that can be made by free radical halogenation of alkanes are: (a) RCl and RBr but not RF and RI (c) RF, RCl, RBr and RI (d) RF, RBr and RI but not RCI				

70. Alkyl chloride and bromides can be converted into alkanes on treatment with Zn-Cu couple and alcohol due to reduction by:

- (a) molecular hydrogen
- (b) nascent hydrogen
- (c) electron transfer from the metal to the alkyl halide followed by addition of proton from alcohol
- (d) all statements are correct
- 71. Which of the following alkaline earth metal sulphates has hydration enthalpy higher than the lattice enthalpy?(a) CaSO4(b) BeSO4(c) BaSO4(d) SrSO4

72. Aniline in a set of the following reactions yielded a coloured product 'Y'. Compound Y is:

75. In the Duma's method for the estimation of nitrogen, 0.84 g of an organic compound Gave 448 mL of nitrogen at STP. The % of N in the compound is:

80. Consider the following sequence of the reaction:

82. Identify the reagent which can easily distinguish between 1-butyne and 2-butyne:

(a) bromine in CCl ₄	(b) H ₂ , Lindlar catalyst
(c) dilute H ₂ SO ₄ , HgSO ₄	(d) ammoniacal Cu ₂ Cl ₂

83. Structure of a disaccharide formed by glucose and fructose is given below. Identify theAnomeric carbon atoms in monosaccharide units:

84. Which one of the following statements for the order of a reaction is incorrect? (a) Order of reaction is always whole number

(b) Order can be determined only experimentally

- (c) Order is not influenced by stoichiometric coefficient of the reactants
- (d) Order of reaction is sum of power to the concentration terms of reactants to express the rate of reaction

85. How many grams of concentrated nitric acid should be used to prepare 250 mL of $2.0MHNO_3$? Given the acid is 70% HNO₃

(a) 45 g	(b) 90 g	(c) 70 g	(d) 54 g	
86. Lanthanoid contrac	tion is caused due to:			
(a) The same effection (b) The imperfect sh (c) The appreciable so (d) Since lanthanoid	ve nuclear charge from Ce to ielding on outer electrons by shielding on outer electrons l s are rare earths	Lu 9 4f electrons from the nuclea by 4f electrons from the nucle	r charge ear charge	
87. The complex, [Pt (P (a) 2	y) (NH₃) Br Cl] will have how (b)1	r many geometrical isomers? (c)3	(d) 4	
88. Which of the follow	ving elements is present as th	ne impurity to the maximum e	extent in the pig iron?	
(a) Phosphorus	(b) Manganese	(c) Carbon	(d) Silicon	
89. The smog is essent	ially caused by the presence	of		
(a) $O_2 \otimes O_3$	(b) $O_3 \otimes N_2$	(c) oxides of 5 & N	(d) $O_2 \& N_2$	
90. AB crystallizes in a oppositely charged ion	body centred cubic lattice wi s in the lattice is:	th edge length 'a' equal to 38	7 pm. The distance between t	wo

(a) 335 pm (b) 250 pm (c) 200 pm (d) 300 pm

PART – C (BIOLOGY)

(d) Entamoeba

91. Largest sperm	natozoids in plant kingdom			
(a) Pinus	(b) Selaginella	(c) Dryopteris	(d) Cycas	
92. Thallophyta ir	ncludes			
(a) Fungi and b	acteria	(b) Algae, fungi, ba	cteria and lichens	
(c)Algae, fungi and lichens		(d) Algae and fungi		
93. A unicellular o	organism often considered cor	necting link between plants	and animals is	

(b) Paramecium

94. Match the columns and choose the correct option

(a) Monocystis

	I		Ш
а	Ernst Mayr	1	Discovered viroids
b	Whittaker	2	Gave the name virus
С	Pasteur	3	Proposed five kingdom classification
d	Diener	4	Darwin of 20 th century

(a) a-4, b-3, c-2, d-1	(b) a-3, b-4, c-2, d-1	(c) a-2, b-3, c-4,	d-1 (c	ל) a-1, b-2, c-3, d-4
95. Capitulum inflorescence is (a) Malvaceae	found in (b) Fabaceae	(c) Liliaceae	(d) Composita	эе
96. Blood does not transport of (a) Cockroach	xygen due to absence of (b) Earthworm	respiratory pigment in (c) Frog	(d) Rabbit	
97. In the following diagram of alphabets. Choose the answer matched with the parts which	a leg of Cockroach parts in which these alphabets they indicate	have been indicated by have been correctly	ç	

(c) Euglena

(a) a-coxa, b-tibia, c-tarsus	s, d-femur, e-trochanter		
(b) a-coxa, b-femur, c-troc	hanter, d-tarsus, e-tibia		
(c) a-coxa, b-tarsus, c-fem	ur, d-tibia, e-trochanter		
(d) a-coxa, b-trochanter, c	-femur, d-tibia, e-tarsus		
98. Bond between two residue (a) Amide	s of carbohydrates is (b) Phosphodiester	(c) Glycosidic	(d) Hydrogen bond
99. A unit membrane is absent (a) Lysosome	over (b) Microbody	(c) Golgi apparatus	(d) Ribosome
100. Synaptonemal complex is(a) Spindle attachment(c) Chromatid separation	site of	(b) Replication (d) Chromosome alignment an	d recombination
101. Fermentation products of (a) $H_2O + CO_2$ (c) Methyl alcohol + H_2O	yeast are	(b) Methyl alcohol + CO_2 (d) Ethyl alcohol + CO_2	
102. Pellagra is caused due to t (a) Ascorbic acid/Vit C (c) Pantothenic Acid	he deficiency of	(b) Nicotinic acid/ Vit B₃/Niaciı (d) Folic Acid	ı
103. In C₄ plants, synthesis of s(a) Palisade cells(c) Undifferentiated mesop	ugars / final CO ₂ fixation hyll cells	occurs in (b) Spongy cells (d) Bundle sheath cells	
104. Gastric juice contains (a) Pepsin, Lipase and Re (c) Trypsin, Pepsin and L	ennin ipase	(b) Trypsin, Lipase and Renr (d) Trypsin, Pepsin and Reni	nin nin

Rough Space

105. Element involved in the op (a) Zinc	ening and closing of stor (b) Magnesium	mata, sto (c) Pota	omatal regulation is ssium	(d) Iron
106. The amount of air that mo (a) Residual volume	ves in and out of the lun (b) Vital capacity	gs, with (c) Tida	each normal inspiration I volume	and expiration is called (d) Tidal capacity
107. Number of Calvin cycles re	quired to generate a mo	lecule o	f Hexose is	
(a) 2	(b) 4	(c) 6		(d) 8
 108. In germinating seed , RQ falls when there is shift from (a) Carbohydrate to fat as substrate (b) Fat to carbohydrate (c) Aerobic to anaerobic respiration (d) Protein to carbohydrate 109. Find out the correct matching (a) Thyroid – hyperactivity in young children causes cretinism (b) Parathyroid – secretes parathormone which promotes movement of calcium ion from blood into bones during calcification (c) Thymus – starts undergoing atrophy after puberty (d) Pancreas – delta cells of Islets of Langerhans secrete a hormone which stimulates glycolyisis in the liver. 				
110. Entry of pollen tube throug (a) Chalazogamy	gh micropyle is (b) Mesogamy		(c) Porogamy	(d) Pseudogamy
111. Sarcomere is distance betw(a) Two I – bands	veen (b) A and L bands		(c) Two Z – lines	(d) Z and A bands
112. Which one of the following (a) Bile	g has minimum pH? (b) Pancreatic juice		(c) Saliva	(d) Gastric juice
113. How many chromosomes	will the cell have at G_1 , af	fter S an	d M phase respectively i	f it has 14 chromosomes
at interphase? (a) 7,14,14	(b) 14,14,14		(c) 14,14,7	(d) 7,7,7
114. Fluid mosaic model of cell (a) Danielli and Daveson	membrane was put forw	vard by	(b) Singer and Nicolson	

(c) Garner and Allard		(d) Watson and Crick	
115. When stamens are fused k (a) Monadelphous	by their anthers and their filamer (b) Synandrous	nts are free, the conditio (c) Syngenesious	n is called (d) Epipetalous
116. Binomial nomenclature (a)De Vries	was introduced by (b) Carl Linnaeus	(c) Huxley	(d) John Ray
117. In Whittaker's classification(a) Plantae	on, non-nucleated unicellular org (b) Monera	anisms/prokaryotes are (c) Protista	included under (d) Animalia
118. Filariasis is transmitted thr (a) Anopheles	ough / secondary host of Wuche (b) Culex	ereria is (c) Tse-tse fly	(d) Sand fly
119. Taxonomy based on deter(a) Cytotaxonomy(c) Biochemical taxonomy	mination of genetic relationships	s is (b) Numerical taxonom (d) Experimental taxono	y omy
120. Quiescent center in the m (a) Eames	iddle of the root apical meristem (b) Schmidt	was discovered by (c) Clowes	(d) Hanstein
121. Characteristic free swimm (a) Oncosphere	ing larvae of Coelenterates is (b) Rhabditiform	(c) Planula	(d) Cysticercus
122. Velamen occurs in (a) Epiphytes	(b) Mesophytes	(c) Hydrophytes	(d) Xerophytes
123. Striated and voluntary mu (a) Trachea	scles occur in (b) Lungs	(c) Gall bladder	(d) Limbs
124. Streaming of cytoplasm wi (a) Homeostasis	thin a living cell is (b) Cyclosis	(c) Diffusion	(d) Osmoregulation
125. Storage product of most a (a) Fat	lgae is (b) Starch	(c) Glycogen	(d) Cellulose

126. Polymorphic cell organelle (a) Glyoxysome	is (b) Peroxisome	(c) Lysosome	(d) Golgi complex	
127. A prehensile tail in Chame (a) Swimming	leon is an adaptation for (b) Sliding	(c) Grasping	(d) Climbing	
128. Spindle fibres arise from (a) Centrioles	(b) Centromeres	(c) Nucleus	(d) Mitochondria	
129. Combination of apoenzym(a) Prosthetic group(c) Enzyme-substrate comp	e and coenzyme produces lex	(b) Holoenzyme (d) Enzyme-product col	mplex	
130. Melanocyte stimulating ho(a) Anterior lobe(c) Posterior lobe	ormone (MSH) is secreted by pitu	uitary (b)Intermediate lobe (d) Not any particular lo	obe	
131. The hormone melatonin, v (a)anterior pituitary gland	which is involved in skin blanchin (b)pineal gland	g in lower vertebrates, is (c)melanocytes	s released from the (d)hypothalamus	
 132. Polygonum type of embry (a)7 – celled, 7 – nucleate (c) 8 – celled, 7 – nucleate 	o sac / typical female gametophy	/te of angiosperm is (b) 7 – celled, 8 – nucle (d) 8 – celled, 8 – nucle	ate ate	
 133. Which is the correct sequence in spermatogenesis? (a) Spermatogonia→ spermatids → secondary spermatocytes → primary spermatocytes → sperms (b) Spermatogonia→ spermatids → primary spermatocytes→ secondary spermatocytes → sperms (c) Primary spermatocytes → secondary spermatocytes → spermatogonia→ sperms (d) Spermatogonia→ primary spermatocytes → secondary spermatocytes → spermatids → sperms 134. Which one prevents blood clotting in the blood vessels? (a) Henarin (b) Eibringgen (c) Albumins (d) Globulin 				
135. Type of pollination that br (a) Xenogamy	ings genetically different types o (b) Geitonogamy	f pollen grains to the stig (c) Chasmogamy	gma of the plant is (d) Autogamy	

140. Presence of tail and coarse hair in human baby is(a) Radiation(b) Atavism(c) Mutation(d) Crossing over

141. Citric acid is got from(a) Aspergillusniger(c) Penicilliumcitrinum	b) Rhizobium nigricans d) Lactobacillus bulgaricus	
142. Restriction enzymes are used in genetic er(a) Can join DNA fragments(c) Cut DNA at variable sites	eering because they) Cut DNA at specific base sequences) Are proteolytic enzymes which degrade harmful proteins	
143. Chipko movement is connected with(a) Conservation of natural resources(c) Plant breeding	(b) Plant/forest conservation(d) Project Tiger	
144. Nutrient enrichment of water bodies cause(a) Stratification(b) Eutrophicat	n (c) Succession (d) None of the above	
145. Secondary productivity is rate of formation (a) Decomposers (b) Producers	of new organic matter by (c) Parasites (d) Consumers	
146. Cerebral malignant malaria is caused by(a) Plasmodium ovale(c) Plasmodium falciparum	(b) Plasmodium vivax (d) Plasmodium malariae	
147. Bt in popular Bt-Cotton/Bt-Brinjal stands for (a) Biotechnology(c) Bacillus thuringiensis	(b) Bacillus tomentosa (d) Best type	
148. Formation of mRNA over DNA template is (a) Translation(b) Transcription	(c) Reverse transcription (d) Transduction	
149. A color blind woman marries a normal vision (a) Both sons and daughters are color blind (c) All sons are normal	ned male. In the offspring (b) All daughters are color blind (d) All sons are color blind and daughters are carriers	

150. Gaseous mixture used by Miller for the synthesis of amino acids through heat and electric discharge included

(a) Methane, ammonia, hydrogen and water vapours (b) Methane, ammonia, nitrogen and water vapours (c) Nitrogen, methane, oxygen and water (d) Ammonia, carbon dioxide, nitrogen and water vapours 151. In angiosperms, the number of meiotic divisions required to produce 100 microspores is (a) 125 (b) 100 (c) 50 (d) 25 152. Element playing important role in Nitrogen fixation is (a) Mn (b) Mo (c) Zn (d) Cu 153. Which of the following is a natural growth inhibitor? (b) ABA/Ethylene (d) GA (a) NAA (c) IAA

154. Which stages of cell division do the following figures a and b represent respectively

156. Corpus callosum is found in

Rough Space

NEET

(a) Medulla oblongata	(b) Pons	(c) Cerebrum	(d) Cerebellum
157. The term new systematics (a) 1809	was given by Julian Hux (b) 1901	ley in (c) 1840	(d) 1940
158. In <i>Ruscus</i> , the stem modif (a) Phylloclade 159. Copper T / loop prevents	fication is called (b) Cladode	(c) Phyllode	(d) Sucker
(a) Ovulation	(b) Fertilization	(c) Zygote formation	(d) Cleavage
160. Human eggs are (a) Alecithal	(b) Microlecithal	(c) Mesolecithal	(d) Macrolecithal
161. DNA segment cleaved by I (a) ATTCGA TAAGCT	EcoRlis (b) GAATTC CTTAAG	(c) GCTTAA CGAATT	(d) GTTCAA CAAGTT
162. Genetically modified crops(a) Recombinant DNA technology(c) Cross breeding	s can be produced by nology	(b) Somatic hybridizatio (d) Micro propagation	on
163. Which animal has become (a) Snow Leopard	e extinct from India? (b) Hippopotamus	(c) Wolf	(d) Cheetah
164. Who proposed the term e (a) Odum	cosystem? (b)Gardner	(c) Warming	(d) Tansley
165. 'Golden Age of Dinosaurs' (a) Mesozoic	/ Age of Reptiles was (b) Coenozoic	(c) Palaeozoic	(d) Psychozoic
166. Crop rotation is employed(a) Increasing nitrogen cont(c) Community development	for tent of soil nt	(b) Checking soil erosio (d) Enhancing soil fertil	n ity
167. A polygenic inheritance in (a) Skin color	human beings is (b) Phenylketonuria	(c) Color blindness	(d) Sickle cell anaemia

168. A gene pair hides the effect(a) Epistasis	ct of another. The pheno (b) Dominance	menon is (c) Mutation	(d) None of the above	
169. Cross between hybrid and (a) Back cross	recessive parent is (b) Test cross	(c) Monohybrid cross	(d) Dihybrid cross	
170. Dihybrid test cross ratio is(a) 9 : 3 : 3 : 1171. DNA fingerprinting was de	(b) 1 : 1 : 1 : 1 veloped by	(c) 3 : 1	(d) 1 : 1	
(a) Jeffrey et al (c) Boysen and Jensen		(b) Schleiden and Schwann(d) Edwards and Steptoe		
172. Silencing of mRNA/RNA in (a) Viruses	terference has been use (b) Insects	d in development of plant resista (c) Fungi	ance to (d) Nematodes	
173. A nonsense / termination (a) UUU	codon is (b) GCG	(c) UAG/UAA	(d) CCC	
174. Remnants of nucellus pres (a) Pericarp	ent in seed of Black Pep (b) Periderm	per and Beet are called (c) Endosperm	(d) Perisperm	
175. Hormone responsible for a (a) FSH	ovulation and developme (b) LH	ent of Corpus Luteum (c) LTH	(d) ICSH	
176. Passive immunity is obtain (a) Antibiotics	ed through injecting (b) Vaccines	(c) Antibodies	(d) Antigens	
177. Exotic breed of cattle is (a) Friesian	(b) Holstein	(c) Jersey	(d) All of the above	
178. The pyramid which cannot (a) Biomass	t be inverted in a stable e (b) Number	ecosystem is that of (c) Energy	(d) All of the above	
179. A treeless biome is (a) Tundra	(b) Grassland	(c) Desert	(d) All of the above	
Rough Space				

180. Endosperm is found in angiosperms due to double fertilization. It is however absent in certain seeds due to lack of

- (a) Certain enzymes
- (c) Dicotyledenous hormones

(b) Growth hormones (d) Nutrient